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Introduction to Porous Materials

 Poroelastic Materials

e.g. Melamine, Polyurethane

 Fibrous Materials-
e.g. Glass Wool, Fiberform

 Felts (Recycled Materials)- e.g. 
Nonwovens, PET Felts

 Resistive Films/ Scrims

 Aluminium, Polythelyne films

 Micro-perforate Materials 



Sound Package Materials-Automotive Applications



Sound Absorbing Porous Materials - Classification

Sound Absorbing Porous materials are classified in three categories
 Elastic Frame

 Full coupling between the fluid and structural phases of the material  
 Motion of both fluid and frame  
 Frame bulk modulus of same order as fluid (approx. 100000 Pa for air) 
 Dilatational fluid and frame wave propagation, as well as frame shear wave propagation 

(3 wave types) 

 Rigid Frame
 Solid phase does not move  
 Frame bulk modulus is significantly greater than that of the fluid  
 Airborne wave only, i.e. situations where the frame is not excited directly  
 Boundary conditions are important  

 Limp Frame
 Solid phase has essentially no stiffness, moves in phase with the acoustic wave  
 Frame bulk modulus significantly less than that of air  
 Airborne wave propagation only  
 Boundary conditions less important 



Poroelastic Model-Elastic Frame (Biot Model)

 Biot’s theory describes the interactions between the 2 phases :
Solid phase = elastic skeleton or frame
Fluid phase = air (or other fluid) in the pores
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    Helmholtz Equation

u Solid phase macroscopic displacement vectors

Fluid phase macroscopic pressurep
,  Effective solid phase Lame’ Cofficients

fK Effective fluid phase bulk modulus

s Effective solid phase density

f Effective fluid phase density

 Effective fluid-solid coupling coefficient



Poroelastic Model-Rigid Frame
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Viscous Effects

Thermal Effects
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Viscous Effects

Poroelastic Model- Limp Frame  

 Helmholtz Equation with effective density and bulk modulus
 Added Inertia for solid phase



Transfer Matrix Approach

Transfer Matrix for single layer I R

T

 



I

II

1
1

1

nn

n n

PP
T

V V




  
      

    


1T
     

cos( . ) .sin( . )

.sin( . ) cos( . )
c c

c

c c c

jk d k dz
j z k d k d

 
 
 
  

3   [Ns/m ] c c cZ K

-1     [m ] c c ck K

Transmission
Coefficient

Reflection
Coefficient

11 0 21

11 0 21

T cTR
T cT








12

11 0 21 22
0

2 ikdeT TT cT T
c





  

 Normal Incidence Sound Absorption Coefficient 

 Normal Incidence Sound Transmission Loss 

 Random Incidence Sound Absorption Coefficient 

 Random Incidence Sound Transmission Loss
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Poroelastic Materials-Characterization

Biot’s Parameters for Porous Materials

 Porosity

 Air-flow resistivity

 Tortuosity

 Characteristic Lengths

 Density of Fibers/Material

 Young modulus

 Poisson Ratio

 Loss factor
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Polyurethane foam

Melamine foam



Porosity

 It is the ratio of the volume of air voids to total volume of material

 air
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Measurement Principle

 It is based on Isothermal Expansion of ideal gas (Boyle’s law)

 Results for some porous materials 1
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Effect of Porosity on Sound Absorption and Transmission Loss

Porosity Variation- 0.5 to 1, 
Flow Resistivity 10872,  tortuosity 1, VCL 99 and TCL 142
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 It is the ratio of Air pressure difference to steady state velocity

 Results for some Typical Materials
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Effect of Flow Resistivity on Sound Absorption and Transmission Loss

Flow Resistivity Variation- 1000-100000 
Porosity 0.99,  tortuosity 1, VCL 99 and TCL 142
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Tortuosity (Structure Factor)

 Tortuosity parameter describes the degree of irregularity of the porous 
“flow channels”

 Dimensionless Parameter

 Tortuosity range for Porous materials 1 ൏ 𝛼ஶ ൏ 10

 Methods

- Conductivity Method [Brown et. al]

- Oblique incidence [Fellah et. al]

∞ = 1

∞ > 1



Measurement Principle

1.002Melamine Foam

2.97Cellular Rubber 

1.96Coustone

 High frequency limit of the complex phase velocity

 Results for some Typical Materials
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Effect of Tortuosity on Sound Absorption and Transmission Loss
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Chracteristics Lengths (VCL& TCL)

 Viscous Characteristic Length
It is related to the size of the inter-connection between two pores in the 
porous material
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 Thermal Characteristic Length

It is related to the diameter of the pore connecting chanels
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Effect of VCL & TCL on Sound Absorption and Transmission Loss

Porosity 0.99, FR 10872, Tortuosity 1.001

VCL Variation-
1 - 200 micron
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Mechanical Parameters-Young’s Modulus, Poisson Ratio & Loss Factor
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Effect of Young’s Modulus and Poisson Ratio on Sound Absorption and Transmission 
loss
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Sound Absorption

 It is defined as the ratio of the sound energy reflected by a surface to the 
sound energy incident upon that surface.

 The sound absorption coefficient ranges from 0 to 1 and varies with 
frequency.

[ ]Sound energyreflected
Sound energyincident

  

Sound absorption Coefficient Measurement in Two 
Impedance Tube

Random Incidence Sound Absorption in a 
Reverberation Room
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Power Amplifier

Microphones

Loud Speaker

PULSE Front-End



Sound Transmission Loss 

 It is defined as the ratio of sound power incident on a partition to 
the sound power transmitted through the partition.

Sound Power Transmitted
Sound Power Incident
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Measurement of Normal Incidence Sound Absorption and 
Transmission Loss-Three Microphone Impedance Tube

Impedance Tube Test

,         are the pressure and velocity at 
,         are the pressure and velocity at

Hij is the transfer function between the ith and jth microphones 

x : is the position of the microphones

: is the ambient density of the air, k : wave number

1 2
4
1

s l

 
21 1 2

1 2

sin sin
sinx o

H kx kxP
k x x






 
2 21 1

0 1 2

cos cos
sinx o

kx H kxjkV
k x x






31x d
P H


 0

x d
V




x o
P

 x o
V

 0x 
x d

P
 x d

V


x d

0

0 0
11

0

x d x d x x

x d x d x x d

P V P V
T

P V P V
   

   





2 2

0
12

0

x x d

x d x d x x d

P P
T

P V P V
 

   





2 2

0
21

0

x x d

x d x d x x d

V V
T

P V P V
 

   






From reciprocity condition and symmetry condition 

   

   

11 12

21 22

cos sin

sin cos
c

c

jd dT T Z
T T

jZ d d

 

 

 
          

12

21
c

TZ
T

  11
1 cosck T
d



 .coss c cZ Z k d [Ns/m3] 

 
0 0

2 2
0 0 0 0

4.Re( ).
2 .Re( )

s

s s

Z c
Z c Z c


 


    0

0

2

sin 2coth c

c

Z Zkd kd
Z Z







 

  
 



Inverse Chracterization Techniques

Experimental 
Setup

Acoustic Model-
JCA Model

Poroelastic  Model-
Biot Model

Density 
Sound Speed

Porosity
Flow Resistivity
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VCL
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Simulation / 
Acoustic Material 

Databank

Elastic Model

Young’s Modulus
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Loss factor



Inverse Techniques

 Parameters to be determined
The physical parameters of poroelastic materials            
determined are , , , and ’.

 Principle of Measurement
Inverse characterization from the low frequency measurement of 
the surface impedance and complex acoustical properties inside 
the impedance tube.

 Precision
Errors are generally below 5% for all physical parameters.

 Methods
Analytical Inverse 
Optimization Method



Analytical Inverse: Tortuosity, VCL & TCL

 Tortuosity from real part of bulk density

 Viscous Chracteristic Length from imagenary part of bulk density

 Thermal Chracteristic Length from imagenary part of bulk modulus 
(Lafarge’s Model)
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Characteristics Lengths-Computed

 VCL and TCL are computed at mid frequency range 1100-
1800 Hz

Computed VCL
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Analytical Inverse-Results

 Melamine Foam 20 mm 
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Analytical Inverse-Results

 Polyurethane Foam 25 mm 
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Analytical Inverse-Results
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Optimization Inverse Method-Genetic Algorithm

 The genetic algorithm is a method for solving both 
constrained and unconstrained optimization problems that 
is based on “natural” selection. Over successive 
generations, creating “children” from the best “parents”, 
the population "evolves" toward an optimal solution.

 In this analysis the surface impedance of the material put 
on a rigid wall has been used as cost function:

  meas model  SSCF ZZZs  

Predicted Surface Impedance-Allard Modelmodel

SZ

meas

SZ Measured Surface Impedancemeas
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Natural Selection

Genetic Code 
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Inverse Technique (Genetic Algorithm)

 Polyurethane Foam
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Inverse Technique (Genetic Algorithm)

 Polyurethane Foam-25 mm
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Inverse Technique (Genetic Algorithm)

 Melamine Foam-29 mm
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Inverse Technique (Genetic Algorithm)

 PET Felt 25mm

Comparison of Sound absorption coefficient 
Measured and Simulated
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Intrinsic Parameters-Melamine Foam 20 mm-10 Kg/m3
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Simulation and Validation- Sound Absorption

Comparison of Sound absorption coefficient 
Measured and Simulated
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Simulation and Validation- Sound Absorption
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Simulation and Validation–Sound Transmission
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Random Incidence Sound Absorption Measurement

 Reverberation Room- [ISO 354/ ASTM 423]

Sound absorption is measured using Sabine’s Formula
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Simulation and Validation-Sound Absorption

PET Felt-25mm-24Kg/m3
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Random Incidence Sound Transmission Loss - Reverberation Suite

 Two adjacent reverberation rooms are arranged with an opening 
between them in which the test partition is installed as per ASTM E90.

 Sound Transmission loss is related to Noise reduction as

1010 log
A

NRT SL     
 

1 2N PL LR S SP 

S-Area of the sample
A- Room constant of the receiving room

 Noise Reduction is simply the difference between sound pressure levels on 
opposite sides of a wall

SPL1 – Sound Pressure Level in the Room 1
SPL2 – Sound Pressure Level in the Room 2



Random Sound Transmission Loss of Steel Plate

Random Sound Transmission Loss of Steel Plate 
(0.8mm measured with Two chamber Method)
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Steel Plate 0.8 mm + Foam 20 mm- Simulation

 Test was carried out in a Reverberation room with Anechoic 
chamber as a receiver room
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Vehicle Dash Insulator

 It seperates Engine compartment from Passenger cabin

 A typical dash insultor consists of Steel plate + Porous 
Decoupler + Heavy Layer

 Resonating Frequency Range in between 100 Hz to 500 
Hz which is similar to Engine firing frequency.

Source 
room

Receiver 
room

Heavy layer

Foam / Fiber

Steel plate



Vehicle Dash -Simulation and Validation

’DensityThickness

[m][m][-][Ns/m4][-][Kg/m3][mm]

1504.22.011500000.912504 mmHard Felt
1501401.5155000.974815 mmSoft Felt
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Vehicle Floor Carpet

 It is the second larget part covering maximum area (11%) after 
headliners (21%)

 This is used to reduce Road as well as Engine noise inside cabin
 It consists of multiple layers of sound packages like foams, fibers, 

felts, EVA etc.



Material Characterization - Physical & Intrinsic Parameters

PorosityFlow Resistivity DensityThicknessLayersSr. No.

[-][Ns/m4][Kg/m3][mm]
--6002mmPET with PVC1

0.90300006415 mmSoft Felt2

 ́∞
2152151.20.9030000Soft Felt

Intrinsic Parameters

Physical Parameters

Soft Felt PET with PVC Layer Carpet Sample 1

PET 0.5 mm
PVC 2 mm

Soft Felt 15 mm



Simulation and Validation –Sound Absorption and Transmission Loss
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Vehicle Floor Carpet is tested with Steel Plate 
of 0.8 mm Thickness

Vehicle Floor Carpet is tested inside an 
Impedance Tube



Effect of Apertures & Leakages

 Leaks are crucial role in transmission path at mid/high frequencies

 Leaks are due to passthroughs, Boot liners, etc.
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Effect of Thickness-Sound Absorption-Flow Resistivity 10 KN.S/m4
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Effect of Air Gap-Sound Absorption- Thickness-10 mm
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Effect of Mass-Sound Transmission Loss-Thickness-20 mm
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Effect of Thickness-Sound Transmission Loss-
Flow Resistivity-25 KN.s/m4
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Analytical Inverse Characterization-GUI 



Optimization Inverse Method-Genetic Algorithm- GUI

Charact. A

Charact. B

Natural Selection

Genetic Code 
(DNA):

𝝈

𝝓

𝜶ஶ𝜦

𝜦ᇱ



Porosity Flow Resistivity

Quasi-static
Mechanical Analyzer

Inverse from Impedance
Tube Measurement

Tortuosity

Acoustic Material Database



Sound Package Simulator

Acoustic Material Modelling



 Optimization Tool for optimizing thickness constraints on 
Materials for Higher Sound Absorption

Optimization of Sound Package-Multilayers



Oberst Bar setup for Damping

Root Damping material

Free length

Root
Damping material

Unconstrained layer – Free layer Constrained layer – Multi layer



GUI for Oberst Bar Method



If you are intereted in my profile, plese contact me on...
info@alfaacoustics.com

www.alfaacoustics.com


